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Abstract
The augmented space approach to the study of random ternary alloys, described in an earlier
paper (Alam and Mookerjee 2009 J. Phys.: Condens. Matter 21 195503), has been combined
with the generalized recursion method of Viswanath and Müller (1993 The User Friendly
Recursion Method, (Troisieme Cycle de la Physique, en Suisse Romande)) and the
tight-binding linear muffin-tin orbitals technique (TB-LMTO) to study the optical response in
disordered CuxNiyZnz alloys, and compared with existing experimental results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

First principles electronic structure calculations of multi-
component disordered alloys has been a challenging problem.
The absence of lattice translational symmetry is the main
obstacle to the construction of a quantitative theory,
comparable in accuracy and efficiency with those for ordered
crystalline solids. The situation becomes more difficult when
the types of constituent atoms are more then two. The
majority of electronic structure calculations for disordered
alloys have dealt with binary substitutional alloys, whereas
most alloys of practical interest are multi-component. Binary
alloy systems provide us with a first step in the understanding
of higher-order alloy systems. In addition, many systems,
like binary alloys with vacancies or binary magnetic alloys
with random moments, can also be thought of as special cases
of more general higher-order alloys. The study of optical
properties for these multi-component alloys systems is an
important tool in understanding and characterizing them. In
this paper we shall proceed from our earlier work [1] on the
augmented space recursion (ASR) technique for calculating the
electronic structure for ternary alloys, and combine this with
the generalized recursion method of Viswanath and Müller [2]
to study the optical properties for ternary alloys.

In section 2 we shall first generalize the augmented space
formalism for optical properties for ternary alloys. In section 4

we shall apply our methodology to Cux NiyZnz alloys. The
motivation behind the choice of this alloy is that there are
experimental data available in the literature which will help
us to confirm the validity and accuracy of our proposed
methodology.

2. Configuration averaging using augmented space
approach

The ideas behind the augmented space approach to the study
of the electronic structure of random ternary alloys have been
described in great detail in an earlier communication [1]. Here
we shall briefly introduce only those essential points which
will enable us to apply the methodology to study the optical
response in random ternary alloys.

(i) The first thing to note is that any set of uncorrelated
random local potential parameters in the ternary alloys can
written in terms of ternary random variables {nR}, where
each nR takes values 1, 0,−1, corresponding to whether
the site R is occupied by A, B or C type of atoms, with
probabilities proportional to their concentrations: x, y, z
where x + y + z = 1.

(ii) The augmented space approach [3] expresses the
probability densities p(nR) = xδ(nR − 1) + yδ(nR) +
zδ(nR + 1) as the projected spectral densities of operators
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{NR}, whose eigenvalues are 1, 0 and −1, the values taken
by nR , and the corresponding eigenstates |1〉, |0〉 and |1̄〉
are its ‘configuration’ states:

p(nR) = − 1

π
lim
δ→0

Im〈∅| ((n + iδ)I − NR)
−1 |∅〉. (1)

The projection is on to the ‘average’ state |∅〉 = √
x |1〉 +√

y|0〉 + √
z|1̄〉.

(iii) We work in a new basis of representation: |0〉 = |∅〉,
|{1}〉 and |{2}〉: which is the ‘average’ state and two other
linear combinations of the ‘configuration’ states which
are all mutually orthogonal. These three states span the
configuration space φR of nR (of rank 3).

(iv) In this basis the representations of NR and MR = N2
R are:

NR =
⎛
⎝
α1 β1 0
β1 α2 β2

0 β2 α3

⎞
⎠

MR =
⎛
⎝

A1 B12 B13

B12 A2 B23

B13 B23 A3

⎞
⎠

where,

α1 = (xA − xC)

α2 = N2
1

[
(xA − xC)(x

2
B − 4xAxC)

]

α3 = xB(xA − xC)

−xA − xC + (xA − xC)2
β2

1 = 1

N2
1

1

N2
1

= (xA + xC)− (xA − xC)
2

β2
2 = xB + xB(xA − xC)

(xA + xC)− (xA − xC)2

×
[
(xA − xC)− xB(xA − xC)

(xA + xC)− (xA − xC)2

]

A1 = α2
1 + β2

1 , A2 = α2
2 + β2

1 + β2
2

A3 = α2
3 + β2

2 B12 = (α1 + α2)β1

B13 = β1β2 B23 = (α3 + α2)β2.

(v) The operators in full configuration space � = ∏⊗
R φR

are:

ÑR = α1P̃0
R + α2P̃1

R + α3P̃2
R + β1T̃ 01

R + β2T̃ 12
R

M̃R = A1P̃0
R + A2P̃1

R + A3P̃2
R + B12T̃ 01

R

+ B23T̃ 12
R + B13T̃ 02

R ,

(2)

here, P̃λ
R = I ⊗ I ⊗ · · · ⊗ |λR〉〈λR | ⊗ · · · and T̃ λλ′

R =
I ⊗ I ⊗ · · · ⊗ (|λR〉〈λ′

R | + |λ′
R〉〈λR |) ⊗ · · · where λ =

0, 1, 2. The projection operator counts the number of
configuration fluctuations at the site R, while the transfer
operators create or annihilate configuration fluctuations at
the site R.

(vi) Any random local potential parameter X R in the
Hamiltonian now can be expressed in terms of nR as:

X R = 1
2 nR(1 + nR) XA + (1 − nR)(1 + nR) XB

+ 1
2 nR(nR − 1) XC

where XA, XB, XC are the values taken by X R ,
corresponding to the random variable nR having the values

1, 0,−1, respectively. The augmented space theorem
replaces nR by the corresponding operator NR , and n2

R
by MR = N2

R , X R is replaced by an operator X̃ R in the
‘configuration’ space spanned by the ‘configuration’ states
of NR , and can be written as:

X̃ R = XB Ĩ + 1
2 (X

A − XC)ÑR + 1
2 (XA − 2XB + XC)M̃R .

(3)
(vii) For the realistic calculations we start from the TB-

LMTO Hamiltonian. The equation (3) then gives us
a prescription of how to set up the augmented space
operators corresponding to the potential parameters
CRL ,	RL and oRL . The second order TB-LMTO
Hamiltonian has the familiar form:

H̃ = Ẽν
L + h̃ − h̃ õ h̃

h̃ =
∑
RL

(
C̃RL − Eν

L

) ⊗ PRL

+
∑

RL,R′ L ′
	̃

1/2
RL S̃RL,R′ L ′	̃

1/2
R′L ′ ⊗ TRL,R′ L ′,

(4)

where L is the composite index of (α�mσ). PRL ,
and TRL,R′L ′ are projection and transfer operators in
the Hilbert space H spanned by the basis {|RL〉},
respectively. C̃RL , 	̃

1/2
RL and õRL are operators in the

configuration space of nR and have the same form as
X̃ R described above. The Hamiltonian is a function
of a whole set of random variables {nR}, one for each
site. The configuration space of the whole set is � =∏⊗

φR , where φR is the configuration space of the
variable nR and is spanned by the three eigenstates of
NR . The augmented Hamiltonian H̃ is an operator in the
augmented space  = H ⊗�.

(viii) The augmented space theorem [3] tells us that the
configuration average of any function of {nR} is:

〈〈 f [H ({nR})]〉〉 = 〈{∅}| f̃ [H̃({ÑR , M̃R})]|{∅}〉 (5)

where |{∅}〉 = | ∏⊗
R {0R}〉.

3. Optical response in disordered ternary alloys

3.1. The generalized recursion

In this section we shall discuss a new method for the
calculation of optical conductivity of disordered ternary alloys.
The idea of this generalized recursion method was proposed
by Viswanath and Müller [2]. It is based on the linear
response theory. If we consider an electro-magnetic field as the
perturbing field, the equation for the linear current response in
the system is:

〈J μ(t)〉 =
∫ ∞

−∞
χμν(t − t ′) Aν(t ′) (6)

where, Aν(t) is the vector potential, and the response function
(which is the generalized susceptibility) can be written as:

χμν(t − t ′) = (i/h̄) �(t − t ′) 〈[J μ(t),J ν(t ′)]〉, (7)
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where jμ is the current operator and � is the Heaviside
step function. If the underlying lattice has cubic symmetry,
χμν = χδμν . The fluctuation dissipation theorem then relates
the imaginary part of the Laplace transform of the response
function, i.e. the generalized susceptibility, to the Laplace
transform of a correlation function:

χ ′′(ω) = (1/2h̄) (1 − exp{−βh̄ω}) S(ω) (8)

where,

S(ω) =
∫ ∞

0
dt exp{i(ω + iδ)t} Tr (J μ(t) J μ(0)) . (9)

Since the response function is independent of the direction
label μ for cubic symmetry, in the following we shall drop this
symbol. In case of other symmetries we can generalize our
results for different directions. From the above discussion, it is
clear that for given a quantum ‘Hamiltonian’ H , our goal is to
obtain the correlation function,

S(t) = 1

N

∑
R

〈R|J (t)J (0)|R〉 = 〈R|J (t)J (0)|R〉. (10)

This will be true if translational symmetry holds and the last
expression is independent of the label R. The correlation
function can be determined directly via the recursion method,
as described in our earlier paper [4]. In order to simplify
the expressions for the dynamical quantities as produced
by the Hamiltonian, we consider henceforth the modified
Hamiltonian H̄ = H − E0 I , whose band energy is shifted
to zero. Let

|ψ(t)〉 = J (t) |φ〉. (11)

The time evolution of this ket is governed by the Schrödinger
equation

−i
d

dt
{|ψ(t)〉} = H̄ |ψ(t)〉. (12)

We shall now generate an orthogonal basis {| fk〉} for
representation of equation (12). which can be done in the
following way.

(i) We begin with initial conditions:

| f−1〉 = 0; | f0〉 = J (0)|R〉.

(ii) We now generate the new basis members by a three term
recurrence relationship:

| fk+1〉 = H̄ | fk〉 − αk | fk〉 − β2
k | fk−1〉 k = 0, 1, 2 . . .

where,

αk = 〈 fk |H̄ | fk〉
〈 fk | fk〉 β2

k = 〈 fk | fk〉
〈 fk−1 | fk−1〉 . (13)

We now expand the bra |ψ(t)〉 in this orthogonal basis:

|ψ(t)〉 =
∞∑

k=0

Dk(t) | fk〉. (14)

Substituting equation (14) into equation (12) and using the
orthogonality of the basis, we get:

−iḊk(t) = Dk−1(t)+ αk Dk(t)+ β2
k+1 Dk+1(t) (15)

with D−1(t) = 0 and Dk(0) = δk,0. We shall now show that
the pair of sequences generated by us, namely, {αk} and {β2

k },
are enough to generate the correlation function. We first note
that:

D0(t) = 〈 f0|ψ(t)〉 = S(t). (16)

If dk(z) is the Laplace transform of Dk(t), it also satisfies a
three term recurrence:

(z − αk) dk(z)− iδk,0 = dk−1(z)+ β2
k+1 dk+1(z)

k = 0, 1, 2 . . . . (17)

This set of equations can be solved for d0(z) as a continued
fraction representation:

d0(z) = i

z − α0 − β2
1

z − α1 − β2
2

z−α2−···

. (18)

The structure function, which is the Laplace transform of the
correlation function, can then be obtained from the above:

S(ω) = lim
δ→0

2 Re d0(ω + iδ). (19)

In case of a disordered alloy, we notice that S(t) =
S[H̄({nR})] is a function of the random variable nR and we
need to calculate the configuration averaged value. Therefore
we use the augmented space formalism and, applying the
augmented space theorem [3], we can write:

〈〈S(t)〉〉 = 〈R ⊗ {∅} ∣∣ J̃ (t)J̃ (0) ∣∣ R ⊗ {∅}〉
= S[H̃({ÑR, M̃R})] (20)

where the augmented space Hamiltonian H̃ and the current
operators J̃ (t) are constructed by replacing every random
variable nR and n2

R by the corresponding operators ÑR and
M̃R . The recursion may now be modified step by step in the
full augmented space:

D̃0(t) = 〈 f0|{∅} ⊗ ψ(t)〉 = 〈〈S(t)〉〉 (21)

where | f0〉 = J̃ (0)|R ⊗ {∅}〉 and,

d̃0(z) = i

z − α̃0 − β̃2
1

z − α̃1 − β̃2
2

z−α̃2−...

. (22)

The configuration averaged structure function, which is
the Laplace transform of the averaged correlation function, can
then be obtained from the above:

〈〈S(ω)〉〉 = lim
δ→0

2 Re d̃0(ω + iδ) (23)

3
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3.2. Construction of the Hamiltonian and current operators in
augmented space

As we have already mentioned, before we carry out the
recursion in augmented space for the calculation configuration
averaged correlation function, we need to construct the
Hamiltonian and the current operator in augmented space.
We shall start with a second order Hamiltonian for a random
ternary alloy represented in the minimal basis of a tight-
binding linear muffin-tin orbitals method (TB-LMTO). The
TB-LMTO basis starts from the minimal muffin-tin orbitals
of a Kohn–Korringa–Rostocker (KKR) formalism and then
linearizes it by expanding around ‘nodal’ energy points Eν�.
The wavefunction is then expressed as a linear combination of
these basis functions:

� jk(r) =
∑
RL

c jk
RL

[
φRL(r, Eν�)+

∑
R′L ′

h RL R′ L ′ φ̇R′ L ′(r, Eν�)
]
,

where L is the composite index (α�mσ), α labels the particular
atom in the unit cell, �mσ are the angular momenta-spin
indices, j is the band index and R labels the unit cell. Here,

φRL(r, Eν�) = ı � Y�m(r̂) φR�(r, Eν�);

φ̇RL(r, Eν�) = ı � Y�m(r̂)
∂φR�(r, E)

∂E

∣∣∣∣
E=Eν�

.

The TB-LMTO secular equation provides the expansion
coefficients c jk

RL .
In this basis, the matrix elements of the current operator

can be written as

JμRL,R′ L ′ =
[

V (1),μ
RL,RL ′δR R′

+
∑
L ′′

{
V (2),μ

RL,RL ′′ h RL ′′,R′ L ′ + h RL,R′L ′′ V (3),μ
R′L ′′,R′L ′

} + · · ·

+
∑
R′′ L ′′

∑
L ′′′

h RL,R′′ L ′′′ V (4),μ
R′′L ′′′,R′′ L ′′ h R′′ L ′′,R′ L ′

]
, (24)

where

V (1),μ
RL,RL ′ =

∫
r<sR

d3r φ∗
RL ′(r, Eν�)(−i∇μ) φRL(r, Eν�)

V (2),μ
RL,RL ′ =

∫
r<sR

d3rφ̇∗
RL ′(r, Eν�) (−i∇μ) φRL(r, Eν�)

V (3),μ
RL,RL ′ =

∫
r<sR

d3r φ∗
RL ′(r, Eν�) (−i∇μ) φ̇RL(r, Eν�)

V (4),μ
RL,RL ′ =

∫
r<sR

d3r φ̇∗
RL ′(r, Eν�) (−i∇μ) φ̇RL(r, Eν�).

We shall use the prescription from Hobbs [5] to obtain the
above matrix elements.

If we define the vector �ΓL L ′ to be a combination of Gaunt
coefficients:

�ΓL L ′ =
√

2π

3

[(
Gm′,−1,m
�′,1,� − Gm′,1,m

�′,1,�

)
x̂

+ ı
(

Gm′,−1,m
�′,1,� + Gm′,1,m

�′,1,�

)
ŷ + √

2Gm′,0,m
�′,1,� ẑ

]

and the following integrals:
∫ sR

0
φ∗

R�′(r, Eν�′ )φR�(r, Eν�)r
3dr = I ��

′
R ;

∫ sR

0
φ∗

R�′(r, Eν�′)φ̇R�(r, Eν�)r
3dr = J ��

′
R

∫ sR

0
φ̇∗

R�′(r, Eν�′)φR�(r, Eν�)r
3dr = K ��′

R .

We now introduce the notation (1/2)s2
R(D

ν�
R − Dν�′

R −1) =
D��′

R , where Dν�
R are the logarithmic derivatives of φR�(r, Eν�)

at r = sR , where sR is the atomic sphere radius. These are
obtained as parameters in the TB-LMTO routines.

Then the components of the matrix elements involved in
the current operator become

V (1),μ
RL,RL ′ = ı �−�

′−1�
μ

L L ′

× [
(Eν� − Eν�′)I

�′�
R − D�′�

R ξR� ξR�′
]

V (2),μ
RL,RL ′ = ı �−�

′−1�
μ

L L ′

× [
(Eν� − Eν�′)J

�′�
R + I �

′�
R − D�′�

R ηR� ξR�′
]

V (3),μ
RL,RL ′ = ı �−�

′−1�
μ

L L ′

× [
(Eν� − Eν�′)J

�′�
R − I �

′�
R − D�′�

R ξR� ηR�′
]

V (4),μ
RL,R′L ′ = ı �−�

′−1�
μ

L L ′
[
(Eν� − Eν�′)K

��′
R

+ J �
′�

R − J ��
′

R − D�′�
R ηR� ηR�′

]
,

(25)

here ξR� = φR�(sR, Eν�) and ηR� = φ̇R�(sR, Eν�).
Ideally the next step should be to calculate pair-wise

currents, where the two end sites are occupied by atom pairs
AA, BB, CC, AB, BC or AC embedded in the disordered
medium. However a simpler first step would be to obtain these
current terms from the pure A, B and C and from the ordered
alloys AB, BC and AC.

The current operator in the ternary disordered system,
unlike the Hamiltonian parameters which were local, leads
to off-diagonal disorder. Intrinsically the single-site coherent
potential approximation is unable to deal with such problems.
The strength of the augmented space method comes to the fore.
The current can be written as

�J =
∑
RL

�JRL,RL PRL +
∑

RL,R′ L ′
�JRL,R′ L ′ TRL,R′ L ′ . (26)

The diagonal term of the current operator can be written
as

�JRL,RL = nR(nR + 1)

2
�J AA
RL,RL + (1 − n2

R)
�J BB
RL,RL

+ nR(nR − 1)

2
�J CC
RL,RL (27)

while the off-diagonal term may be written as

�JRL,R′ L ′ = nRnR′(nR + 1)(nR′ + 1)

4
�J AA
RL,R′L ′

+ (1 − n2
R)(1 − n2

R′) �J BB
RL,R′ L ′ · · ·

· · · + nRnR′(nR − 1)(nR′ − 1)

4
�J CC
RL,R′L ′ · · ·

4
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Figure 1. Atom projected density of states for Cu50Zn25Ni25 ternary
disordered (top) and ordered (bottom) alloy. The vertical (blue) line
marks the Fermi energy.

· · · +
[

nR(nR + 1)(1 − n2
R′)

2

+ nR′(1 − n2
R)(nR′ + 1)

2

]
�J AB
RL,R′ L ′ · · ·

· · · + nRnR′

4
[(nR + 1)(nR′ − 1)

+ (nR − 1)(nR′ + 1)] �J AC
RL,R′ L ′ · · ·

· · · +
[
(1 − n2

R)(nR′ − 1)

2
nR′

+ (nR − 1)(1 − n2
R′)

2
nR

]
�J BC
RL,R′ L ′ . (28)

We need to express this current operator in augmented space.
Replacing nR by the corresponding operator ÑR , and n2

R by
M̃R , we get

�̃J RL,RL = �J BB
RL,RL Ĩ + �J (1)RL,RL M̃R + �J (2)RL,RL ÑR (29)

these operators either count or create/annihilate configuration
fluctuations locally at sites R and

�̃J RL,R′L ′ = �J BB
RL ,R′L ′ Ĩ + �J (3)RL ,R′L ′(M̃R + M̃R′ )

+ �J (4)RL ,R′ L ′(ÑR + ÑR′ )+ · · ·
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Figure 2. (Top) Experimentally observed absorptivity of Cux NiyZnz

disordered ternary alloy for four different compositions (from
Schroder and Mamola [13]). (Bottom) Theoretical curve for the
absorption coefficients of the same in the right side. The (black) full
curves are for Cu80Ni10Zn10, the (red) dashed curves are for
Cu76Ni9Zn15, the (green) dashed–dot curve is for Cu70Ni9Zn21 and
(blue) dashed–dot–dot curve is for Cu66Ni8Zn26 alloy.

· · · �J (5)RL ,R′ L ′ M̃R ⊗ M̃R′

+ �J (6)RL ,R′ L ′(M̃R ⊗ ÑR′ + ÑR ⊗ M̃R′)

+ �J (7)RL ,R′ L ′ ÑR ⊗ ÑR′ (30)

where

�J (1)RL ,R′L ′ = 1
2 (

�J AA
RL ,R′ L ′ + �J CC

RL ,R′L ′ − 2 �J BB
RL ,R′L ′)

�J (2)RL ,R′L ′ = 1
2 (

�J AA
RL ,R′ L ′ − �J CC

RL ,R′L ′)

�J (3)RL ,R′L ′ = 1
2 (

�J AB
RL ,R′ L ′ + �J BC

RL ,R′L ′ − 2 �J BB
RL ,R′L ′)

�J (4)RL ,R′L ′ = 1
2 (

�J AB
RL ,R′ L ′ − �J CB

RL ,R′L ′)

�J (5)RL ,R′L ′ = 1
4 (

�J AA
RL ,R′ L ′ + 4 �J BB

RL ,R′L ′ + �J CC
RL ,R′ L ′

− 4 �J AB
RL ,R′ L ′ + 2 �J AC

RL ,R′L ′ − 4 �J BC
RL ,R′ L ′)

�J (6)RL ,R′L ′ = 1
4 (

�J AA
RL ,R′ L ′ − �J CC

RL ,R′L ′ − 2 �J AB
RL ,R′L ′ + 2 �J BC

RL ,R′ L ′)

�J (7)RL ,R′L ′ = 1
4 (

�J AA
RL ,R′ L ′ + �J CC

RL ,R′L ′ − 2 �J AC
RL ,R′L ′).

(31)
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It is easy to check that all the factors above vanish when the
structure matrices are independent of site occupation (i.e. not
random). The operators in the first line of equation (30) either
count or create/annihilate configuration fluctuations at either
of the two sites R and R′. The last four operators in the
second line of equation (30) either count or create/annihilate
configuration fluctuations simultaneously at both the sites R
and R′. These operators are essentially non-local and cannot
be dealt with in a local (single-site) mean-field approximation.

Once the Hamiltonian is set up, as in equation (4), and the
current operators are set up, as in equations (29) and (30), we
go back to our formulation of augmented space recursion, as
described, and carry out the calculation for the configuration
averaged optical response functions.

We use the augmented current operator to construct the
starting state

|ψ(0)〉 = J̃ μ |R ⊗ {∅}〉

and perform the recursion in augmented space to calculate the
configuration averaged correlation function 〈〈S(ω)〉〉. Finally,
the imaginary part of the dielectric function is related to this
correlation function through:

ε2(ω) = 4π
〈〈S(ω)〉〉
ω2

. (32)

The real part of the dielectric function ε1(ω) is related to
the imaginary part ε2(ω) by a Kramer’s Krönig relationship:

ε1(ω) = 1

4π

∫ ∞

−∞
dω′ ε2(ω

′)
ω − ω′ . (33)

All optical response functions may now be derived from
these. The optical conductivity follows:

σ(ω) = ωε2(ω)

4π
.

If we assume the orientation of the crystal surface to
be parallel to the optical axis, the reflectivity R(ω) follows
directly from Fresnel’s formula:

R(ω) =
∣∣∣∣
√
ε(ω)− 1√
ε(ω)+ 1

∣∣∣∣
2

(34)

where ε(ω) = ε1(ω) + iε2(ω) is the complex dielectric
function.

4. An application to CuxNiyZnz alloys

As an initial attempt, we have applied our methodology within
the framework of TB-LMTO for disordered ternary Cux NiyZnz

alloys. The alloy with the composition around 2:1:1, is known
to form a solid solution of a face-centered cubic structure at
the temperature 776 K [6]. Upon cooling, long range ordering
takes place. All three constituent atoms in this system are in
the same row of the periodic table and are neighbors. As a
result we can say that there is a very small charge transfer
between the constituents while forming this metallic alloy.
Also the alloy should have little atomic displacement effect.

Vrijen [7] showed that the axial ratio within the fully ordered
face-centered cubic phase of Cu50Zn25Ni25 is unity within the
experimental accuracy, confirming that lattice distortions and
displacements are relatively small. The binary subsystem of
this alloy consisting of Cu and Zn has already been discussed
in our previous paper [8]. There we studied the effect of
short ranged ordering on the optical properties of this system.
We have also shown that the alloy with equal proportion of
Cu and Zn is a split band and has a tendency to ordering.
Using the tetrahedron approximation of the cluster variation
method Rooy et al [9] predicted the phase diagram of a ternary
Cux NiyZnz alloy. Experimentally it has been found that the
ternary Cu50Zn25Ni25 alloy, in a face-centered cubic structure,
exhibits a high-temperature short range order and there are
two first order phase transitions occuring as the temperature
is decreased. Shinya et al [10] have studied the short range
ordering effect on this alloy by using the anomalous scattering
method. They have shown that there is short ranged ordering
between Cu–Zn and Ni–Zn atoms, while the correlation is
in the opposite sense between Cu and Ni atoms. Because
both ordering and clustering tendencies have been observed
in the binary alloys of the constituent atoms, Ceder et al
[11] supposed that the ternary alloy might exhibit interesting
competing effects, and studied the stability of the face-centered
cubic ground state for this alloy.

On the other hand, the experimental study of optical
properties in this alloy is quite interesting. Pure Cu exhibits a
main absorption edge near 600 nm and a secondary absorption
structure near 300 nm. We have already discussed earlier that
alloying Cu with Zn shifts the position of the main peak to
lower wavelengths and the secondary peak to higher ones. For
the 50–50 concentration of Cu and Zn the reflectivity curve has
a sharp peak at around 540 nm, which indicates the color of the
alloy. Mott and Jones [12] suggested that the main absorption
edge is associated with inter-band transitions from the d-band
to the Fermi-surface, and the secondary absorption edge with
transition from the Fermi-surface to the higher bands. Using
this suggestion the rigid-band model can interpret this behavior
qualitatively. However, the shift of the absorption structures
is less than the rigid-band model prediction. The model
fails completely to predict the optical properties of Cu–Ni
alloys with up to 25% of Ni. The positions of the main and
the secondary absorption edges remain within experimental
accuracy at 600 and 300 nm, respectively. This result has
been explained using the concept of ‘virtual energy states’.
In a Cu–Ni alloy, if Ni atoms replace Cu atoms then virtual
energy states are created below and above the Fermi-surfaces.
Therefore it would be interesting to study the optical properties
of Cux NiyZnz to see the effect of the extra electrons of the Zn
atoms.

We have calculated the density of state for a disordered
Cux NiyZnz alloy by using the TB-LMTO-ASR method.
Figure 1 shows the atom projected density of state of
disordered Cu50Zn25Ni25 disordered alloy in the top panel and
same for the ordered alloy in the face-centered cubic structure
at the bottom. We have already discussed that there is only a
very small charge transfer in this alloy system. We see that the
d-band of the Zn atoms is well separated from those of Ni and

6
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Cu66Zn26Ni8 Cu70Zn21Ni9

Cu76Zn15Ni9 Cu80Zn10Ni10

Photon energy (Ryd)

ε 2 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

Figure 3. Imaginary part of the dielectric function (ε2) of disordered Cux NiyZnz ternary disordered alloy for four different concentrations.

Cu. Those of Ni and Cu, of course, show considerable overlap.
On alloying, hybridization between Zn and Cu/Ni bands causes
the single peak of Zn to break into two. There is considerable
overlap between the Cu and Ni d-bands and its effect in the
disordered alloy is evident, with large disordered smearing due
to the scattering induced complex self-energy.

We have also applied our methodology to obtain the
optical properties of ternary Cux NiyZnz alloys. Schröder and
Mamola [13] measured the absorptivity of this alloy with
Ni concentration ∼8–10% and increasing Zn concentrations
from 10 to 26%. Figure 2 shows their results for percentage
absorptivity as a function of wavelength in the top panel and
our theoretical results at the bottom. The absorptivity for
different compositions have been arbitrarily shifted vertically
for better viewing.

At the lowest Zn concentration 10% experiment shows a
prominent peak at 300 nm, theory yields a prominent peak
at 310 nm with a weak structure at 360 nm. Presence of Zn
in a Cu–Ni alloy produces a split in the absorptivity peak at
300 nm. For 15% Zn there are two structures at 310 and
350 nm, while the theory shows structures at 310 and 365 nm.
With increase of Zn concentration, the new peak becomes
prominent and shifts to higher wavelengths. For 21% Zn the
peaks are at 320 and 390 nm while for 26% Zn they are at
330 and 410 nm. Theory shows these structures at 320 and
390 nm and 330 and 400 nm, respectively. The overall trend
seen in experiments on introduction of Zn in the Cux NiyZnz

alloys where the Ni concentration is almost fixed is reproduced
well in our theoretical predictions. The theory has more finer
structures (particularly in the lower peak); however, given that
experiments are done at finite temperatures and have their own
resolutions, we do not expect to match these finer resolved
structures with experiment.

It will be instructive to examine the optical conductivity.
In figure 3 we present the imaginary part of the dielectric func-
tion ε2(ω) of disordered Cux NiyZnz alloys with four different
compositions: Cu66Zn26Ni8, Cu70Zn21Ni9, Cu76Zn15Ni9 and
Cu80Zn10Ni10. The cross-over from Drude-like behavior oc-
curs at the onset of transitions from the top of the d-bands to
states above the Fermi energy. This onset energy then is an
indication of the energy difference between the top of the d-
band and the Fermi energy. Increasing the Zn concentration
Schröder and Mamola [13] showed that the Fermi level shifts
to higher energies since the number of electrons per atom in-
creases. This is also reflected in our calculated density of state
in figure 3 (top).

5. Conclusion

We have proposed a combination of the augmented space
technique and the generalized recursion method of Viswanath
and Müller expressed within a TB-LMTO basis (TBLMTO-
AS-GR) as a suitable computational methodology for the study
of optical response in ternary alloy systems. We have applied
our formalism to Cux NiyZnz alloys. Our theoretical analysis
helps to understand the experimental data of these alloys from
a microscopic viewpoint. We suggest the use of this technique
for further studies of response functions in ternary disordered
alloys.
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